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MOTIVATION
1. How can we improve accessibility for the visually impaired?
2. Can visual captioning be made real-time yet reliable using a
combination of both machine and human intelligence?
CHALLENGES
 How do we validate a machine generated caption 1n real-time?
« Existing measures such as BLEU, METEOR, ROUGE and CIDEr are
sensitive to n-gram overlap.
e They do not take into account the visual attributes present in the image.
« SPICE compares visual attributes but 1s sensitive to scene graphs.
« All methods require at least one reference caption to determine validity.
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OUR APPROACH
1. Build a text corpus from the list of captions and text descriptions
accompanying the image descriptions in the dataset.
2. Generate a Latent Dirichlet Allocation (LDA) based Topic Model [1].
3. Train a Topic2Vec model by associating each caption with the
appropriate topics [2,3].
4. Identify visual attributes using appropriate visual classifiers.
5. Derive topic distribution for given attributes using word-topic matrix
generated from LDA.
6. Compute cosine similarity to quantify semantic relatedness of the
caption to visual attributes present in the 1mage.
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PRELIMINARY RESULTS

We show the visual
similarity between

sample caption from the
MS COCO [5] dataset,

Caption: “Two animals that are Caption: “A woman holding a clear Caption: “Some people wearing
looking at something in the wall.” umbrella in a dark city.”
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Caption: “Dining room area with a  Caption: “A train that is parked Caption: “A table that has been
stove and a small dining area in next to a train station.” serving a large tray of food.”
front of a window.”

fOI’In in their respe CtiVG Visual Similarity: train (0.9388),  Visual Similarity:
p Visual Similarity: dining table person (0.6521), bench (0.6002), vegetables (0.8768), meat (0.9018),
. . (0.7706), chair (0.6168), stove television (0.5720), sky (0.6277), drink (0.7986), man (0.7504),
Captlons have a hlgher (0.7189), window (0.6997), fence (0.5660) woman (0.7414), glass (0.6440),
television (0.4349), table (0.4933) cap (0.5375), pizza (0.8841),

clock (0.4503)

similarity score.

CONCLUSIONS AND FUTURE WORK

« Our approach successfully measures the degree of semantic relatedness
between a natural language description and the visual attributes 1n an
Image 1n real-time.

* Does not require exhaustive set of reference captions.

« Also provides a form of weak-supervision labels for caption annotation
in hybrid-intelligence systems.

« We would like to compare our approach with existing evaluation
metrics such as SPICE.
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CONTACT

We’re hiring and looking to collaborate with research groups. If you’re
interested, please reach out!
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